4,767 research outputs found

    On the applicability of Taylor's hypothesis in streaming magnetohydrodynamic turbulence

    Full text link
    We examine the range of applicability of Taylor's hypothesis used in observations of magnetic turbulence in the solar wind. We do not refer to turbulence theory. We simply ask whether in a turbulent magnetohydrodynamic flow the observed magnetic frequency spectrum can be interpreted as mapping of the wavenumber turbulence into the stationary spacecraft frame. In addition to the known restrictions on the angle of propagation with respect to the fluctuation spectrum and the question on the wavenumber dependence of the frequency in turbulence which we briefly review, we show that another restriction concerns the inclusion or exclusion of turbulent fluctuations in the velocity field. Taylor's hypothesis in application to magnetic (MHD) turbulence encounters its strongest barriers here. It is applicable to magnetic turbulence only when the turbulent velocity fluctuations can practically be completely neglected against the bulk flow speed. For low flow speeds the transformation becomes rather involved. This account makes even no use of the additional scale dependence of the turbulent frequency, viz. the existence of a "turbulent dispersion relation".Comment: 31 pages, 3 figures, submitted to Earth, Planets & Spac

    On the ion-inertial range density power spectra in solar wind turbulence

    Get PDF
    A model-independent first-principle first-order investigation of the shape of turbulent density-power spectra in the ion-inertial range of the solar wind at 1 AU is presented. De-magnetised ions in the ion-inertial range of quasi-neutral plasmas respond to Kolmogorov (K) or Iroshnikov-Kraichnan (IK) inertial-range velocity turbulence power spectra via the spectrum of the velocity-turbulence-related random-mean-square induction-electric field. Maintenance of electrical quasi-neutrality by the ions causes deformations in the power spectral density of the turbulent density fluctuations. Kolmogorov inertial range spectra in solar wind velocity turbulence and observations of density power spectra suggest that the occasionally observed scale-limited bumps in the density-power spectrum may be traced back to the electric ion response. Magnetic power spectra react passively to the density spectrum by warranting pressure balance. This approach still neglects contribution of Hall currents and is restricted to the ion-inertial range scale. While both density and magnetic turbulence spectra in the affected range of ion-inertial scales deviate from Kolmogorov or Iroshnikov-Kraichnan, the velocity turbulence preserves its inertial range shape in this process to which spectral advection turns out to be secondary but may become observable under special external conditions. One such case observed by WIND is analysed. We discuss various aspects of this effect including the affected wavenumber scale range, dependence on angle between mean flow velocity and wavenumber and, for a radially expanding solar wind flow when assuming adiabatic expansion at fast solar wind speeds and a Parker dependence of the solar wind magnetic field on radius, also the presumable limitations on the radial location of the turbulent source region.Comment: Pages 18, Figures 5, Discussion paper submitte

    Detailed Studies of Pixelated CZT Detectors Grown with the Modified Horizontal Bridgman Method

    Full text link
    The detector material Cadmium Zinc Telluride (CZT), known for its high resolution over a broad energy range, is produced mainly by two methods: the Modified High-Pressure Bridgman (MHB) and the High-Pressure Bridgman (HPB) process. This study is based on MHB CZT substrates from the company Orbotech Medical Solutions Ltd. with a detector size of 2.0x2.0x0.5 cm^3, 8x8 pixels and a pitch of 2.46 mm. Former studies have emphasized only on the cathode material showing that high-work-function improve the energy resolution at lower energies. Therfore, we studied the influence of the anode material while keeping the cathode material constant. We used four different materials: Indium, Titanium, Chromium and Gold with work-functions between 4.1 eV and 5.1 eV. The low work-function materials Indium and Titanium achieved the best performance with energy resolutions: 2.0 keV (at 59 keV) and 1.9 keV (at 122 keV) for Titanium; 2.1 keV (at 59 keV) and 2.9 keV (at 122 keV) for Indium. These detectors are very competitive compared with the more expensive ones based on HPB material if one takes the large pixel pitch of 2.46 mm into account. We present a detailed comparison of our detector response with 3-D simulations, from which we determined the mobility-lifetime-products for electrons and holes. Finally, we evaluated the temperature dependency of the detector performance and mobility-lifetime-products, which is important for many applications. With decreasing temperature down to -30C the breakdown voltage increases and the electron mobility-lifetime-product decreases by about 30% over a range from 20C to -30C. This causes the energy resolution to deteriorate, but the concomitantly increasing breakdown voltage makes it possible to increase the applied bias voltage and restore the full performance.Comment: Accepted for publication in Astroparticle Physics, 25 pages, 13 figure

    The Prograde Orbit of Exoplanet TrES-2b

    Get PDF
    We monitored the Doppler shift of the G0V star TrES-2 throughout a transit of its giant planet. The anomalous Doppler shift due to stellar rotation (the Rossiter-McLaughlin effect) is discernible in the data, with a signal-to-noise ratio of 2.9, even though the star is a slow rotator. By modeling this effect we find that the planet's trajectory across the face of the star is tilted by -9 +/- 12 degrees relative to the projected stellar equator. With 98% confidence, the orbit is prograde.Comment: ApJ, in press [15 pages
    • …
    corecore